✅FLAML (Microsoft)
A Fast Library for Automated Machine Learning & Tuning
Quickstart
Last updated
A Fast Library for Automated Machine Learning & Tuning
Last updated
from flaml import AutoML
automl = AutoML()
automl.fit(X_train, y_train, task="classification")automl.fit(X_train, y_train, task="classification", estimator_list=["lgbm"])from flaml import tune
tune.run(evaluation_function, config={…}, low_cost_partial_config={…}, time_budget_s=3600)from flaml.default import LGBMRegressor
# Use LGBMRegressor in the same way as you use lightgbm.LGBMRegressor.
estimator = LGBMRegressor()
# The hyperparameters are automatically set according to the training data.py
estimator.fit(X_train, y_train)